
JOURNAL OF APPROXIMATION THEORY 73, 303-333 (1993)

Bounds and Inequalities for General Orthogonal
Polynomials on Finite Intervals

YING GUANG SHI*

Computing Center, Chinese Academy of Sciences, Beijing, People's Repuhlic of China

Communicated by Paul G. Nevai

Received January 8, 1991; accepted in revised form February 28, 1992

In this paper using a new effective approach we deduce some bounds and
inequalities for general orthogonal polynomials on finite intervals and give their
applications to convergence of orthogonal Fourier series, Lagrange interpolation,
orthogonal series with gaps, and Hermite-Fejer interpolation, as well as to the L 2

version of the principle of contamination. The main results are: we obtain far­
reaching generalizations of the important results of P. Nevai on divergence of
Lagrange interpolation in LP with p> 2 ["Orthogonal Polynomials," Memoirs of
the Amer. Math. Soc., Vol. 213, Amer. Math. Soc., Providence, RI, 1979. Corollary
10.18, p. 181; J Approx. Theory 43 (1985), Theorem, p. 190] and give new answers
to Problems VIII and IX of P. Tunin [J. Approx. Theory 29 (1980), pp. 32-33];
we extend Tunin's Inequality [Anal. Math. I (1975), 297-311, Lemma II] to
"arbitrary" measures supported in [ -I, I] and solve Problem LXXI of P. Tunin
[J. Approx. Theory 29 (1980), p. 71].[11993 Academic Press. Inc.

1. INTRODUCTION

Let IX(X) be a nondecreasing function on [-1, 1] with infinitely many
points of increase such that all moments of dex(x) are finite and {Pn(x)},

Pn(x) :=Pn(dex,x)=Yn xn +... (1)

(Yn := Yn(dlX) > 0), the orthonormal polynomials with respect to dlX. The
support of dlX is the set of points of increase of IX(X) and is denoted by
supp(dlX). We call dlX a measure.

Denote a triangular matrix of nodes by

X: (xo==xo. n==)1 :;:::X 1n >X2n > '" >xnn

:;::: - 1( == x n+ I. n == X n+ d, n = 1, 2, ... , (2)

• Supported by the Science Fund of the Chinese Academy of Sciences.

303
0021-9045/93 $5.00

Copyright:t 1993 by Academic Press, Inc.
All rights of reproduction in any fOfm reserved



304 YING GUANG SHI

and the Lagrange interpolating polynomial of! E C[ - t, t] by

II
LIIU) := LII(X,f) := LII(X,f, x):= L !(Xkll) 'kll(X),

k~l

where the fundamental polynomials

n = 1,2, ... ,

k = I, 2, ... , n, n = 1, 2, ... ,

with wn(x) = (x - x11I)(x - x 2n )··· (x - XliII)' n = I, 2, .... If X consists of the
zeros of Pn(x) then we write Ln(dlY.,f) instead of Ln{X,f). For simplicity
sometimes we also write Xk instead of Xkn , etc.

As we know,

n = 1,2, ... (3)

are called the Christoffel functions, where

k = 1, 2, ..., n, n = 1, 2, ....

In attempting to study convergence of orthogonal Fourier series or
convergence of Lagrange interpolation at zeros of orthogonal polynomials,
one invariably encounters the need for bounds and inequalities on the
orthogonal polynomials on the interval of orthogonality. Historically, the
problem of finding bounds and inequalities has lived under the shadow of
the deeper asymptotics on the segment, for the latter are often the only way
of obtaining the former. Of course, this way usually gives asymptotic
estimates for certain "nice" measures only. In this paper we develop an
effective approach to find bounds and inequalities of many important
quantities in orthogonal polynomials for general measures on finite inter­
vals. Thus this makes it possible to extend many important results pre­
viously obtained. In particular, we obtain far-reaching generalizations of
the important results of P. Nevai on divergence of Lagrange interpolation
in U with p > 2 [11, Corollary 10.18, p. 181; 12, Theorem, p. 190] and give
new answers to Problems VIII and IX of P. Tunin [18, pp.32-33];
we extend Tunin's Inequality [17, Lemma II] to "arbitrary" measures
supported in [- 1, 1] and solve Problem LXXI of P. Tunin [18, p. 71].

In the next section we state a basic theorem on which our approach is
based. Then in Section 3 we give bounds and inequalities for }'II- ,h'n'
L ).'L, IPII ,(XknW, and PII(x), respectively. Finally, in Section 4, we
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discuss some applications of these results to convergence of orthogonal
Fourier series, convergence of Lagrange interpolation, orthogonal series
with gaps and Hermite-Fejer interpolation, as well as to the L 2 version of
the principle of contamination.

2. THE BASIC THEOREM

To state our result we need to introduce some notations. For each n,
n = 1, 2, ..., define 1~ in ~;jn ~ n, m n= in - in + 1, and An := [¢j"' ¢;J where

Then we have

{

X
~in = tin

for in> 1

for in = 1,

for in < n
for in = n.

THEOREM 1. Let s be a fixed positive integer, and let 1~ in ~in ~ n for
n = 1, 2, .... Then for any sequence of positive numbers !C = {En} and for any
matrix X there exist sets

j"

In := In(!C, s, X, An) = U (X kn - hkn , Xkn + h~n) (l An
k = in

(4)

holds for all xEAn\ln and n= 1, 2, .... Moreover, the order E~m~-' is the
best possible and is attained by the Chebyshev nodes. I

Proof Main ideas of the proof, including the origin of the crucial
lemma below, can be found in the important paper of P. Vertesi [19]. The
proof is analogous to that of Theorem 1 in [15, p. 763] and corrects some
technical constants to fill a minor gap there.

If IAnl =0 or en~ IAnl then there is nothing to prove, so assume that
IAnl >0 and en < IAnl. Let n be fixed. We introduce the following nota­
tions, where d, dk ~ 0, and adopt the convention that [a, b] := rP if a > b:

1 The last conclusion and its proof are due to one of the referees. I proved that the order
m ~ -, is the best possible and is attained by the Chebyshev nodes.
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k = 0, I, ..., n;

{

[Xk + 1+ d, Xk - d],

Jk(d)= [x,+d,xo],

[Xn+l,x,,-d],

k = I, 2, ... , n - 1

k=O

k=n;

Jk := Jddd := Jk\lddd, k = 0, 1, ..., n;

M,,:= {k: J k C ,1,,};

Nil :=Mn\{O,n}.

Our proof is based on a result of P. Erdos and P. Tunin [4, Lemma IV]:

Ik(x)+lk+l(x)~I,

I,(x) ~ 1,

III(x)~ I,

XEJ.. k= 1,2, ..., n-I

A brief outline of the proof is: For a given ell we will give In in the form

III = U Jk = U Jk\lk(dk),
kEM" keMn

and then determine these d;s and estimate the measures of these Jk's.
To this end we distinguish two cases according to k E Mil (\ {O, n} or

kEN".

Case 1. kEMnn {O, n}.
Put do=dn=2--3e"m~/--S)/\. If, e.g., IJol>O and xEJo(do) we use

11(x) > I to deduce

and

Case 2. k E N n .

Obviously, if Nn#,p then i,,<in' since i,,=in implies l,1 n l=O or
i" = in = 1 or i" = in = n, each of which means Nil =,p. Define Zk = zddd by

Iwn(zk)1 = min Iwn(x)l.
x E Jk(dkl

(5)

Here we refer to a result and its proof given by the author in [15,
Lemma, p. 764] which provides a lower bound for two arbitrary successive
terms in the sum An(x).
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LEMMA. Let s;;<: 1, n;;<:2, and 1~k, r~n-1. Then

307

where

Proof of the lemma. Since

k = 1, 2, ..., n.

by (5) we have

So for xEJ,(dr )

Lk(x) + L k+ I(X);;<: Lk(z,) + L k+ I(Z,)

= Iwn(z ,) IS (Izk - Xk IS 11~(zk)1 + IZk - Xk+ I IS Il~ + I (Zk)l)
wn(zd

;;<: d~ I::i::: IS (Il~(zdl + I/~ + 1(zdl)

;;<: 21-sd~ Iwn(z,) IS
wn(zd

using lk(x)+lk+l(x);;<: 1 for xEJk to deduce that 1~(x)+I~+I(x);;<:21-s.

This completes the proof of the lemma. I
Now we continue the proof of Theorem I. Let dk be defined by

dk = sup{ d: there exists a point x E Jdd)

such that (4) does not hold}, kENn.

Obviously O<dk~~ IJkl and (4) holds for all points, except at most mn
isolated points, in the set UkENnJk(dd. Thus it suffices to estimate the
measure vn := IUkENnJkl = IUkENnJkVk(ddl. Omitting those intervals for
which dk~qn:=vnI6mn we shall estimate the measure ILn:=IUkEKnJkl,
where Kn := {k E Nn: dk > qn}. Since by definition

(6)
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1 U -I v"v" - 11" = . J k ~ 2m"q" ~ 3'
kE Nn\K n

we have 2v,,/3 ~ J1". Thus, if we can show

then

In

1,,= U Jk = U (Xk-dbxk+dkdnJ",
kEAln k=in

(7)

(8)

which will complete the proof.
Now we will prove (7). By the definition of the dr's for each r EN" we

can choose a point urEJr((~)I/'dr) (since (W/v<l) so that (4) does not
hold, i.e.,

where c=(24)-'. Thus by (6) we have

(9)

L drA,,(ur)< 2· lCIl,,[;~m~v.
r E K n

On the other hand, let Z k = ZdWI iv dk ) be defined in (5), i.e.,

Iwll(zdl = min IW,,(x)l.
'E Jd (2/3 )" ,h)

Noting that i" if: N" and hence i" if: K", by the lemma we obtain
ln

drA,,(u r) = dr I Lk(ur)
k = in

( 10)
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where the last inequality follows from the fact that dk > q" for k E K".
Hence

Using the inequality t + l/t ~ 2 (t > 0) and (6) we obtain

rE K" k ~ r
k E K"

~2-1 L: L: d,dk = 2- 3fl;'.
r E K n k E K"

Thus

In comparison with (10) one obtains (7). Since c does not depend on n ,
the proof of (4) is complete.

For the Chebyshev nodes it is well known that

k=I,2, ...,n,

where T,,(x) denotes the Chebyshev polynomial of first kind. If we assume,
say, that !n ~ k ~ ~n and dk =! IJk I then

"
XE U J,(dr )·

r=O

Meanwhile, for i" and)" with ~n~i,,<),,~*n we have 1L1"I~£,,~mnln.

Thus for xEU~~oJ,(d,)(\L1" one obtains

Remark. Theorem 1 in [15, p.762] mentioned above is a special case
when A" == [ -1, 1]. In this paper we usually use the conclusion for s = 1
and in this case (4) becomes

( 12)
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Theorem 1 provides a method to estimate lower bounds of many impor­
tant quantities in orthogonal polynomials and approximation theory.
This method of estimates is suitable for every matrix of zeros (1), for
every measure da defined on [-1, 1], and usually for every n EN. But
other approaches for estimates previously used usually give asymptotic
estimation for certain "good" measures only.

3. BOUNDS AND INEQUALITIES

3.1. Write

Z(a'):= {XE [-1,1]: a'(x)=O};

.II := the collection of all Lebesgue measurable sets in [ - 1, 1];

IQI := the measure of Q, Q E .If;

(J(Ll'b) '= (J(da 'Ll'b) .= inf.Q EoN,.Q c oj, (.01 = b f.Q da(x),. ". f,j da(x) ,

LlEJf,O<b::::;ILlI;

u(b) := u([ -1,1]; b).

( 13)

DEFINITION. We write a E 1: if there exists a [) < 2 such that u(da;

[ - 1, 1]; IS) > O.

Now we have

LEMMA I. If ILlI~b>ILlnZ(a')1 then u(Ll;b»O. In particular, if
IZ(a')1<2, then aE1:.

Proof Write

Then we claim that for every c> ILl n Z(a')1 there exists N such that
lEN 1< c. In fact, suppose to the contrary that there would be
Eo>ILlnZ(a')\ satisfying IEnl~Eo for all n. It is clear that En+1cEn,
n = 1, 2, ... and hence for E = ():~ 1 En we have

Il-X

On the other hand, if x E E then x E Ll n Z( a'), which is a contradiction.
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n = 1, 2, ....
(14 )

Now choose e so that 15 > e > Id n Z(a')I. As proved before, there exists
an N=N(e) such that IENI <e. Then for any Q with QE.It, Qed, and
IQI = 15 we have

f
da(x)~I a'(x)dx~f a'(x)dx~b-e.

D D D\EN N

Whence a(d;b) ~ «15 - e)/N){J,j doc(x)} -I> O. I

The main result in this subsection is

THEOREM 2. Let da be an arbitrary measure supported in [ - 1, 1]. Then
for every 0 < 15 < 2,

Yn-I ~ A IP ( )1 (2 - b) a(b){J~ I dlX(X)} 1/2
L kn n- 1 Xkn ~ 24 '

Yn k~ I

Proof Our starting point is the expression [11, p. 6]

k = 1, 2, ... , n, n = 1,2, ...,

from which it follows that for each n = 1, 2, ...,

r I I(x-xdh(x)\ dlX(x)
-I k~ I

= r IPn(x)1 dlX(x) Yn-I i Ak IPn-I(Xkll
-I Yn k=1

{I I }1/2 Y n
~ da(x) ~ L Ak IPn -I(xdl·

-I Yn k=1

Thus,

( 15)

Applying Theorem 1 with s = 1, d n == [ -1, 1], and en == 2 - 15, we get In
such that lIn I~ 2 - e5 and

Yn-I n «2-b)/24)Jr_I,llIJndlX(x)
- L: Ak IPn-l(xdl ~ {JI d ( )} 1/2

Yn k = I _I IX x

(2-b)a(e5){f~1 da(x)}li 2 I
~ 24 .
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Combining Theorem 2 and Lemma 1 we easily get

COROLLARY I. For every measure drl. supported in [ -1, 1]

andfor (J. E E

I'n J (2 - b) a(b)
--): ,

,'" 24
n = 1, 2, ... ,

I· . f ,'n I 0Imm --> .
n ---+ -y., t'n

COROLLARY 2. Let rI. E E. Then

lim {± ,I } I/n = I.
,,~x k~1 IPn(xkn)1

Proof It follows from Theorem 2 and Lemma I that

liminf"n .. ' I )'kIPn ,(xdl>O.
n-(£, }'n k=l

(16)

( 17)

(18 )

Obviously

I'I;,,, Ikt )'k IPn ,(xdl ~tt Ak f2 = {r IdrJ.(x) f/2. (19)

On the other hand, (15) implies

I'" I, IP ()I I
-,-,-Ak n 1 Xk =IP' ( )1'

In " Xk
k = I, 2, ..., n, n = I, 2, .... (20)

(21 )

Thus our conclusion can be deduced from (18-20). I
3.2. According to an inequality given by G. Freud in [6, formula (24)]

i )'knP~ ~~Xkn) ~ 2(~)2
k~1 l-x k " 1'''··1

and using (16) one obtains an estimate as follows.
In what follows, the sign "0" depends only onrl..

THEOREM 3. Let rJ. E E. Then

(22)
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As immediate consequences of Theorem 3 as well as (15) we state the
following corollaries.

COROLLARY 3. Let ex E 1:. Then for every number 0 < 8" ~ 1,

(23)

COROLLARY 4. Let ex E 1:. Then

" Ak" IP,,-l(Xk,,)/L (l - XZ,,)112
O( 1), (24 )

k= I

" III (x - xk,,)2I Z,,(x) dcx(x)
L )'k"( 1- XZ,,)

O( I), (25 )
k~1

" I~ I I(x - Xk,,) Ik,,(x)1 dex(x)
L (l-x~,,)1/2

O( I), (26 )
k=l

and

" f~1 I(X-Xk") IZ,,(x)1 dcx(x)
L A~~2(l - XZ,,)li2

O( 1). (27)
k~l

Combining (20) and (22) gives

COROLLARY 5. Let ex E 1:. Then

(28)

As to lower bounds we have

THEOREM 4. Let L1 c [ - I, I] be a union of f;'nitely many disjoint
intervals. If p ~ 1 and

then

J tx'(x) dx> 0,
d

liminf L Ak"IP"dxk"W>O.
n ----to cc Xkn E L1

(29)

(30)

Moreover, (29) is necessary for validity of (30) provided that p < 2 and rx is
absolutely continuous.
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Proof Since L1 is a union of finitely many disjoint intervals, (29) implies
that there exists an interval Q c L1 such that SO IX'(X) dx > O. So we may
suppose without loss of generality that L1 == [a, h] and that if S: IX'(X) dx ==
S~ IX'(X) dx for a~c~d~b then c==a and d==b.

Now let 15 satisfy 0 < 15 ~ ~ 1L1\Z(IX')1 and

f
b

-
b f:x'(x) dx ~ !:x'(x) dx.

a+O d

Hence by Theorem 6.1.l in [16, p. 107] there exists a number N such that
for every n ~ N, Pn(x) has at least one zero in both [a, a + 15] and
[b - 15, b], say, xln and x in ' respectively. Then a ~ xjn ~ a + 15, h - 15 ~ x in ~ h,
and

rn
IX'(X) dx ~!J IX'(X) dx

'(j" L1

whenever n ~ N. Now we need the following lemma the proof of which is
similar to that of Theorem 2 and, therefore, it is omitted.

LEMMA 2. For every 1 ~ in ~jn ~ n andfor any 0 < t5n< lL1 nI, where L1 n is
defined in Theorem 1, we have

n == 1, 2, ..., (31)

and for every l~in~jn~n and for any O<t5n<IQn l, where Qn:==
[Xjn ' Xi.], we have

(32)

Now we continue the proof of Theorem 4. Applying Lemma 2 we have

in

L Ak IPII dXk)1 ~ L Ak IPII-1(xdl
.qEA

for n ~ N. Since

k =i"

>- t5a(Qn; IQnl-t5){JOndlX(X)}li2
~ 24

ba(L1; 1L1/-3t5){Sd 1X'(x)dx}I/2
~ 48

1L11- 315 ~ 1L11- ~ 1L1\Z(IX')1 > 1L11-1L1\Z(IX')1 == 1L1 (l Z(IX')I,



GENERAL ORTHOGONAL POLYNOMIALS

by Lemma I we have that a(.1; 1.11 - 315) > 0 and

315

(33)

Using Holder's Inequality, (30) follows from (33).
To prove the second part of Theorem 4, suppose to the contrary that

f.1 o:'(x) dx = 0 where .1 is a nonempty interval. By absolute continuity
f.1 do:(x) =0. Applying Theorem 2.4 in [5, p. 18] we see that for every n,
.1 contains no more than one zero of Pn(x). Therefore for p < 2

Ak IPn_ l(xdl P = Ak -p/2 [AkP~_ I (xdJP/ 2 ~ Ak - p/2 -+ 0

as n -+ 00. Here we apply an identity L~ = 1 Ak P~ _ I(Xk) = I to deduce
)'kP;_l(Xk) ~ 1 for every k and n, and use the result that for absolutely
continuous measures [14, p. 46]

lim max Akn = O. I
n-+ 00 I ~k::!S;n

Theorem 4, together with Lemma 1, gives

COROLLARY 6. Let 0: E E and let .1 be defined as in Theorem 4. If p ~ I
then (30) holds for any .1 satisfying

1.11> 12(0:')1· (34 )

We can also obtain the following estimate of lower bounds for
L~~ 1 ),ZP~-l(xkl, which may easily be deduced from Theorem 1 with
s = 2. We omit the proof.

THEOREM 5. Let do: be an arbitrary measure. Then for every 0 < () < 2

n = I, 2, .... (35)

3.3. As an immediate consequence of (I8) and (35) we have

THEOREM 6. Let 0: E E. Then

n

IPn(x)1 =0(1) L l(x-xkn)/kn(x)1
k~l

and
n

P~(x) = O(n) L (x - xkn)21 Zn(x).
k=l

640173/)·6

(36)

(37)
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COROLLARY 7. Let IX E 1:. Then

(a) The statement

IP,,(x)1 = O( I)

is equivalent to

"L [(x-xkII)h,,(x)i=O(I);
k~l

(38 )

(39)

(b)

(c)

(d)

"IP,,(x)\=O(I) L \Ik,,(x)\;
k~]

).,,(x) P;'(.X') = O( 1);

. ).,,(x) 0(1 ).
A,,+ ](x)

(40)

(41 )

(42)

Proof (a) Equation (36) gives the "if" portion and (15) yields the
"only if" portion.

(b) Equation (40) follows from (36).

(c) By (40) we have

P;'(X)=O(')Lt 'h(X),f =O(')Ltl Ak}Lt I~)~:)}=O(I)A,,-,(X)

and (41) folIows.

(d) Use (41) and the identity

Je,,(x) ), 7 I
), )

=1 + .,,(x) P~(x).
.,,+ ](x

Now we turn to discuss lower bounds for P,,(x). The following is a
TUf<in type inequality with an effective expression and generalizes all
results on finite intervals previously known, including those of TUf<in [17,
p. 307] and Mate et al. [10, p. 279].

THEOREM 7. Let dIX and d{3 be arbitrary measures supported in [ -I, 1]
and 0 <p < 00. Then for every L1 E At the inequalities

LIP,,(dIX, xW d{3(x)

(1L11- by u(d{3; L1; b) IA df3(x)
? (24)P(J~ldiX(X))p/2 ' n=O,I,... (43)



and

GENERAL ORTHOGONAL POLYNOMIALS

f IPn(da, xW df3(x)
Ll

>- (I AI -~)p (J(df3; [ -1, 1]; b) S~ I df3(x)
'" (24)P (S~I da(x))p/2 '

n==O, 1, '"

317

(44 )

n==O,I, ... (45)

hold, whenever J < 1,11. In particular, if IZ(a')1 < 2, then for every
2~ J > IZ(a')I,

f P
2(d ) -1 ( ) >- (~-IZ(:x')1)2 (J«b + IZ(a')1 )/2) 0

Ll n a, x ua x '" 2304 > ,

holds, whenever IA I > ~.

Proof Applying Theorem 1 with s == 1 and [;" =1,11 - 15 we can choose
In so that lIn I ~ [;n == 1,11- J and

X E [ - I, 1] \In' n == 1, 2, ....

On the other hand, by (15) we get

f IP,,(da, xW df3(x) {Yn-l I. Ak IPn- ,(d:x, Xkll}P
Ll\/n )In k~l

== tIn Lt I(X-Xdlk(X)lf dfJ(x).

Obviously,

It follows from (13) that SLl\ln df3 ~ (J(df3; A; b) SLl df3. Thus

f IPn(da, xW dfJ(x) ~ f IPn(da, xW df3(x)
Ll Ll\~

>- (1,11- ~)P SLl\ln df3(x)
'" (24)P (J ~ I da(x))p2

>- -'(1_,1-,1--:-::b,---),---P_(J(-;;-;-df3c-;--:,1,---;-,15)--,,-S.::,..Ll.--:dfJ.....:.(-,-x)
'" (24)P (S~l da(xW 2
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Similarly, using J,1\/. d{J ~ rr(df3; [ - 1, 1]; e5) J~ 1 d{J deduced from (13),
(44) follows. Inequality (45) follows from (44) if we put 13 = rx and p = 2,
and replace e5 by (e5+IZ(rx')I)j2. I

This important theorem has a number of immediate consequences.

COROLLARY 8. If IA\Z(f3')1 > 0, i.e.,

Lf3'(x) dx > 0,

then

(46)

Moreover, if {J is absolutely continuous on A then the converse is true. In
particular,

lim inf f IP,,(drx, x)JP dx > 0
n-l>oc· L1

(47)

if and only if IAI > O.

(48 )n =0,1, ....

COROLLARY 9. lfJ~ldrx(x)=1 andO<p<oo, then for every AE.1t

IAI p + 1LIP,,(drx, xW dx ~ 2(48)P'

Proof Take <5=~ IAI and f3=.1 in (43). I
Using Theorem 1 and (15) we can also prove

THEOREM 8. For every measure drx and for any sequence of positive
numbers ct = {e,,} there are sets

I" := I,,(ct, drx) = U (Xk" - hk", x k" + h~,,) n [ -1, 1]
k~1

I (d e"
P" lX,x)I~24Wldrx(x)1/2'

holds for all x E [ - 1, 1]\lnand n = 1, 2, ....

(49)
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We conclude this section by formulating the following

THEOREM 9. Let oc E E. If oc is continuous at x E [ - 1, 1], then

lim )'n(x) P~(x) = 0
n ........ oc,

if and only if

319

(50)

(51 )

Proof If (51) holds, then (50) follows according to (40). Conversely,
apply Lemmas 9.1 and 10.1 in [11, pp.156, 175] and use continuity of oc

at x. I

4. ApPLICAnONS

The above bounds and inequalities, especially, (16), (30), and (46),
make it possible to extend many important results previously obtained on
convergence of orthogonal Fourier series and on mean convergence of
Lagrange interpolation. The reason is that the inequalities of the forms
(16), (30), and (46), and so forth, are just the crucial points to prove these
results and these inequalities were previously obtained for certain "nice"
measures only, since only for "nice" measures can one use asymptotics to
get them. Sometimes we will not give detailed proofs and will give the
inequalities needed and the references quoted only, since only small
modifications are necessary.

4.1. Absolute Convergence of Orthogonal Fourier Series

THEOREM 10. Let doc be an arbitrary measure. Then the series

00

L Ien Pn(doc, x)1
n=O

(52)

either diverges almost everywhere in [-1, 1] or converges almost
everywhere in the set {x E [ - 1, 1]: oc'(x) > O}, and the latter case is

equivalent to

'00

L len I < 00.
n~O

(53)
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Proof By the same arguments as in Theorem 3 in [9, p. 321] the
convergence of (52) on a set E c [ -1, 1], lEI> 0, implies (53), since that
proof only applies the inequality

for every set A with 1,11 >0. But in the present case by (47) it is true
for every measure drt.. On the other hand, by Lebesgue's Monotone
Convergence Theorem it follows from (53) that

r f Ie"P,,(x)1 rt.'(x) dx ~r i Ie"P,,(x)1 drt.(x)
~-] 11=0 -1 n=O

~ f 1e,,1 r IPn(x)1 dx(x)
11=0 -I

~ ,,~o Ic,,1 {r I drt.(X)} 1/2 < OC,

which means I:;~o Ic"Pn(x)1 a'(x) < CD holds almost everywhere in
[ -1, 1], and hence I::~o Ie"P,,(x)1 < 00 holds almost everywhere in the
set {x E [ - 1, 1]: a'(x) > 0 }. I

Remark. This theorem is a far-reaching extension of Theorem 3 In

[9, p. 321], which is proved for measures da with a' > 0, a.e.

4.2. Mean Convergence of Orthogonal Fourier Series

For fE L~a the nth partial sum of its orthogonal Fourier senes in
orthogonal polynomials Pk(da) is defined by

n -- I I

Sn(da,f, x) = I Pk(x) f f(t) Pk(t) da(t).
k~O -I

(54 )

Now we formulate the following important result in which we use the
notation

{

1 }l/P
Ilgll"d'.p= f Ilg(tWv(x)drt.(x) .

THEOREM II. Let 0 < p < 00, 1 < q < 00, q' = qj(q-I), and
Ul/(l-ql, u, lVELj,. Let f~lw(x)a'(x)dx>O and f~lu(x)a'(x)dx>O.

Suppose

II S,,(da, f) II ... ,17. P ~ C Ilfll u do. q' n = 1,2, ..., VfE L~d>' (55)
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with C independent of nand f Then

sup lIP"(da) II wda. p < 00
n~l

and

sup IIP,,(da)u-llluda.q'<CIJ.
n~ 1

Moreover, if p ~ 2 then

If [a'(x)(I_x2)1/2] -p/2 w(x) a'(x) dx < CIJ
-1

and if I < q ~ 2 then

321

(56)

(57)

(58)

1L1 [a'(x)(l- X2)1/2]qi2(1 - q) u1i(1-q)(x)a'(x) dx < 00. (59)

Proof First we point out that using Holder's Inequality, f E L~ da'
together with Ul/(I-ql E L~a' implies fE L~,. Now (55) gives

IISn+ J(da,f) - S,,(da,f) II wd,.p ~ C Ilflluda. q'

i.e.,

(60)

If we choose f(x) = (IP,,(x)1 u-1(X))I/(q- 11 sign P,,(x) then fE L~ da so that
by (60) we have IIP"llwd:x.pIIP"U-Illud,.q'~C. Applying Corollary 8 we
conclude inf,,;> 1 liP" II wda.p > 0 and inf,,;> 1 IIP"u-11i U do,q' > O. Hence (56)
and (57) follow. Now (58) and (59) follow from Theorem 7.31 in [II,
p. 138]. I

COROLLARY 10. Let da be an arbitrary measure supported in [ - I, I]. If

r [a'(x)' (I - X2)li2] -I dx = 00
-I

for every t:>O, then the sequence of Fourier operators {S,,(da)} is not
uniformly bounded in L:, provided 1~ p ~ CIJ and p ¥ 2.

Proof For p = I or p = CIJ the corollary is true (see [II, p. 169]).
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Now assume 1 < p < 00 and p "* 2. In Theorem 11 let q = p "* 2, W = u = 1.
Then it follows from (58) and (59) that

and

r 1X'(X)I-p/2(l-X2) p/4dx<oc,
>- I

JI 1X'(X)I-p/2(PI)(l-X2)-p/4(p-Ildx<00,
-I

if p>2

if p < 2.

(61)

(62)

On the other hand, by the assumptions, neither (61) nor (62) could be
true. I

Remark. The special examples applying Corollary 10 can be found in
[II, Corollary 8.14, p. 155; Theorems 9.26 and 9.27, pp. 168-169].

4.3. Mean Convergence of Lagrange Interpolation and Problems VIII and
IX of P. Turon

A well-known result proved by Erdos and Turan in [3] is

THEOREM A. For every function f E C[ -1, 1]

It is natural to ask whether one can obtain conditions guaranteeing

for allfE C[ -I, I], where 0 <P < ex) and IV (~ 0) E L I
[ -1, I]. Freud lists

this problem as unsolved problem No. I in his book [5, p. 273].
Meanwhile, one of Turan's favorite and frequently repeated problems was
the following [18, p. 32]

Problem VIII. Does there exist an absolutely continuous measure dlX
with support in [-1, I] such that, for some fE C[ -I, I], we have

lim sup r If(x) - Ln(da,f, x)IP da(x) = 00
n-. x -1

(63)

for every p> 2?

It is remarkable that both Freud and Turan agreed that the resolution
of this problem is of primary significance. In connection with Problem VIII
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Tunin also proposed its somewhat weaker form and another problem
[18, pp. 33-34], which are restated as follows.

Problem IX. Does there exist an absolutely continuous measure drx
with support in [- 1, 1] such that, for every given p> 2, there is an
fEC[-I, 1], such that (63) holds?

Problem XI. Given p> 1, what is a necessary and sufficient condition
that

(64)

for every f E C[ - 1, I]?

Askey [1, p. 77] conjectured that the Pollaczek weight [11, p. 80]
solves Tunin's Problems VIII and IX, and Nevai proved it in [II,
Corollary 10.18, p. 181; 12, Theorem, p. 190].

In what follows, S is the Szego class, i.e., r:x E S means supp(drx) =

[ - 1, 1] and

log rx'(x) 1[_1 1]
r.--=2E L "

v' 1 - x 2

and JS (just Szego) denotes the set of rx satisfying rx E Sand

holds for every e> O.
Nevai's results are the following.

THEOREM B. Let either rx E IS or let rx be a Pollaczek v.'eight or let rx be
defined by

where qJ (> 0) E Lip 1. Then for every p > 2 there exists a function
f E C[ - 1, I] such that (63) holds.

THEOREM C. Let rx E S, 1 ~po < 00, and w (~ 0) ELI [ -1, 1]. Suppose
that

r [Ct'(x)(l - X 2 )1/2] -p12 w(x) dx = IX)

-1
(65)
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holds for every P > Po. Then there exists a function f E C[ -1, 1] such that

lim sup r ILn(da,f, xW w(x) dx = 00
fl --. if)-- ]

(66)

for every P > Po.

Hence, Theorem C solves Problem VIII if we set w = ex'. The crucial
points to prove Theorems Band C are to show (16) and to show that there
exists a number <5>0 such that (33) holds for any ,1 with 1,11 ><5, where
,1 c [ - 1, 1] is a union of finitely many disjoint intervals. The first problem
can be solved easily for the measures in Theorems Band C, since by
Rahmanov's Theorem [13, Theorem 4.5.7, p. 20] we have

I. Y/I- I 11m --=-.
f1_'f_' )'n 2

As to the second one, Nevai points out in [13, p. 29] that it is even more
difficult and he can only prove the following results [11, Corollary 9.13,
p. 161 and Theorem 9.10, p. 160].

THEOREM D. Let ex'(x) (EL I [-I, 1]»Ofor almost every xE(-I, 1)
and ,1 c [ - 1, 1]. Let the sequence {I Pn(x)l} he uniformly hounded for
x E ,1. Then (33) is valid.

THEOREM E. Let ex E S. Then there exists a number <5 = <5(da) > 0 such
that if ,1 c [ - 1, 1] is a union of finitely many disjoint intervals with
1,11 ;:, 2 - <5 then (33) is valid.

Now Corollary 1 and Theorem 4 make it possible to extend Theorems B
and C in case 2 < Po < 00 to a measure ex E I: (see the definition of I: before
Lemma 1).

THEOREM 12. Let exEI:. Ifw (;:, 0)EL 1 andO<p~oo, then

(67)

where C = C(dex) and

IIL/I(de<)11 L~ _ LP = sup IILn(da,J)II ... p •

• Ilfh~ I

Proof The conclusion in case p = 00 is given by (40). Now assume
o<p < 00. Let <5 = 1-! IZ(a')1 and let an interval Q c [ -1,1] satisfy
1Q 1 = <5. Then we can choose two intervals r I and r 2 and define ,1 = r I u r 2
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so that 'In'2=fjJ, dist(Q,L1»O, and 1.11 > IZ(rx')I. Then we obtain
exactly in the same way as in Theorem 10.15 in [11, p. 180] that

where In is the characteristic function of Q. By (16) and (30) there exists
a number d(L1,drx»O and N(L1) such that

'Yn-I L Ak IPn - 1(Xk)1 ?: d- I (L1, drx)
Yn Xk E,j

whenever n?: N(L1). Thus for n?: N(L1) one has

(68)

Of course, we can choose a number d l (L1, drx) instead of 2d{L1, drx) so that
(68) holds for all n?:O. Since this inequality holds for any De[-I, I]
with IDI = <5 > 0, (67) must hold as well. I

COROLLARY 11. Let rx E I and w (?: 0) ELI. If 0 < P < CfJ and

lim sup II Ln{drx) II LX -L~ < 00
n -. cc

then

lim sup IIPn(da)II""p < CfJ.

Moreover, if p?: 2 and (69) holds then

r [rx'(x)(t _X2)lI2] -pi2 w(x) dx < 00.
- 1

(69)

(70)

(71 )

Proof Applying Theorem 12 and Theorem 7.31 in [11, p. 138], (71)
follows from (70). I

This corollary extends Theorem 10.16 in [11, p. 181] and the conclusion
of Theorem 10.15 for p ?: 2 in [11, p. 180]. Letting w = a' and w = 1, respec­
tively, from Corollary 11 and the uniform boundedness principle we
immediately obtain the following two important results.

COROLLARY 12. Let a be absolutely continuous and let 2 <p < 00. If rx
satisfies r [rx'{x)(I_X2 )112J-PI2 rx'(x) dx= 00,

-I
(72)
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then there exists a function f E C[ - I, I] such that

lim sup r If(x) - L,,(drx,f, xW da(x) = w.
n ........ :x;. --- J

COROLLARY 13. Let a E E and let P> 2. If

}~': L1 If- L,,(drx,fW dx =°
for all fE C[ -I, I] then

j l [rx'(x)(1 _ X 2 )1/2] p/2 dx < 00.
- I

(73)

(74)

(75)

Obviously, Corollary 12 extends Theorem B, since all the weights in
Theorem B satisfy (72) for each p> 2. Meanwhile, Corollary 13 gives a
partial answer to Problem XI, more exactly, a necessary condition such
that (64) holds for all fEC[-I, IJ in case L,,(X,f)=L,,(da,f). In
addition, using Corollary 11, we can also prove

COROLLARY 14. Let aEr. Let w (~O)ELl[ -I, I] and 2~po< w. If

r [rx'(x)(I-X 2
)1/2] P'2 w(x)dx=w

-I

holds for every p > Po, then there exists a function f E C[ - I, I] such that

lim sup r \L,,(da,f, x)\p w(x) dx = 00
,,_x - I

(76)

holds for every p > Po.

Proof Use Corollary II and the technical proposition given by Nevai
in [13, Theorem 4.8.3, p. 45]. I

This corollary gives a generalization of Theorem 4.8.2 in [13, p. 44]
and new negative answers to Problems VIII and IX of Turim in [18,
pp.32-33].

4.4. Orthogonal Series with Gaps and Problem LXXI of P. Turan.
P. Tunin in [17, Lemma II] proved the following important inequality

for a measure (l E S (A. Mate et al. in [10, Theorem 13.3] extended it to the
measures dry. satisfying (l'(x) > 0 a.e. in [-I, I]).
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LEMMA A. Let rx E S, and let

-1~b-lJ<b+lJ~l.

Then the inequality

holds uniformly for n = I, 2, ..., and b satisfying(77).
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(77 )

(78)

He also pointed out that C1(drx, (5) here is an ineffective expression
depending only upon 15 and drx, that is, it cannot be calculated explicitly,
and it would be of special relevance to replace it by an effective one. The
background of this requirement was explained in [17; 18, Sect. 59]. In a
few words, inequality (78) plays a crucial role in developing some results
of P. Tunin and N. Wiener, and to give the quantities in these results
explicitly we need the explicit expression for C I (drx, lJ).

As a method to solve this problem, later P. Tunin in [18, p. 71] further
proposed the following

Problem LXXI. Give an explicit estimate for no(drx, lJ) such that, if
O! E S, then

(79)

holds for n > no(drx, lJ).

Since for n ~ no(drx, lJ) we can determine a quantity Co( dO!, lJ) such that
for all permitted b's

the quantity C I (drx, lJ) occurring in (78) can be chosen so that

C 1(drx, (5) = min { Co(drx, J), ~ } ,

which is an effective expression, although it cannot be calculated easily.
Now if we put f3=rx, p=2, and lJ=!IAI>IZ(rx')I, then (44) gives the

following result which extends (78) to general measures and provides a
satisfactory solution to Problem LXXI of Turim, i.e., an explicit expression
of a lower bound of the quantity occurring in Tunin's Inequality.
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THEOREM \3. Let ('I.E!:. Then for every 0> IZ(rx')1 the inequality

f
h+,j ? a(o) 02

h .. ,j P;,(x) drx(x) ~ C1(drx, 0) := -s76 > 0, (80)

holds, provided (77) is valid.

Theorem 13 makes it possible to extend certain results of Tunin [\7,
Theorems I, II, and III] and Wiener [20, Theorem I], and to give explicit
expressions for the quantities occurring in these results. The latter is just a
reason to propose Problem LXXI for Turan.

THEOREM 14. Letrx E rand 1 > 0 > 4 IZ(rx')I. If

III

flll(x) = L ajP./x)
i~ I

satisfies the gap condition

(8\ )

. 1\0592n
VI ~ BI(drx, b) := a(0/4) 03 ' Vi + 1 - Vj ~ B1(&x, 0), j= \, ..., N - \, (82)

then the inequality

II Ih +6
f~(x) drx(x) ~ C 2 (drx, 0) f~(x) drx(x)

-I h· 6

holds for all b's satisfying (77), where

(83 )

(84)

Proof As stated in [\7, p.300], having C1(drx, 0), we can define the
gap condition as follows. Assume that the numbers band 0 satisfy (77).
Now put

{
\,

fo(x) := fo(o, h; x) = 0

1

,'

mear,

linear,

for x = h

for x ~ b - 0 or x ~ h + 0
for x E [b - 0, h]

for xE[b,b+o].

Let Em(.fo) be the deviation of best uniform approximation of fa in
[ - \, \] by polynomials of degree ~ m. Obviously fa E Lip I /6 \. Thus
according to Jackson's Theorem V [2, p. 147] we obtain .
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Hence, if b is fixed and b varies, then

Choose B(drx, b) so large that the inequality
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(85)

(86)

holds whenever m ~ B(drx, b). By (85) it is sufficient to solve the inequality

which implies

3686471:
m ~ a(b/4) 15 3 := B(drx., c5).

Therefore, by [17, (4.7)]

11059271:
B[(dex, b) = 3B(dex, b) = a(b/4) 15 3 •

Again, as proved in [17, p. 300], under the gap condition (82) inequality
(83) holds if we take

which implies (84). I
Applying Theorem 14 instead of Theorem I in [17], and using the

Turan-Wiener arguments in [I7J we can state the following two results,
which extend Theorem III and Theorem II in [17], respectively. But we
will not give detailed proofs, since the proofs are similar (see the comment
in [10, p. 261 ] ).

COROLLARY 15. Let rx E E and b - a > 8 IZ(rx')I. fr the formal series

GC'

L ajPVj(x),
j~l

(87)

satisfying the gap condition (82), is L~~ Abel summable on a subinterval
[a,b] of[-I,I] to anf(x) withf(x)EL~~([a,b]), then it is L~, Abel
summable on [-1,1] to anf(x) withf(x)EL~,([-1, I]).
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COROLLARY 16. Let exEL and b-a>8IZ(ex')I. If a sequence V= {Vj}
has the two properties that (a) the sequence {Pv,(x)} spans C[a, b] in the
sup norm, and (b) omitting finitely many of the v/s the remaining v/s still
have property (a), then

. . f ( ( b - a)h.mm vj+l-vj)<B\ dex,-- .
I~X 2

(88)

4.5. Hermite-Fejer Interpolation

The Hermite-Fejer interpolation of fE C[ -I, I] at the zeros of
PII( dex, x) is defined by

II
HII(f):= H II (!, x) := HII(dex,f):= HII(dex,j, x):= L f(Xkll) Akll(x),

k ~ 1

where

THEOREM 15. Let ex E 1:.

(a) If

then

lim IIHII(da,f)-fll=O,
n _ oc,

VfEC[-1,1], (89)

IIPII(da)11 = o(n l
/
2

);

(b) if Hnldrx) is p-normal, i.e.,

(90)

X E [ -1, 1], k = 1,2, ... , n, n = 1,2, ..., (91)

then for every /; > 0

IIPII(dex)11 = o(n(l-pl/2+<).

Proof (a) It is easy to check that

(92)

II II II
X= I. xkAk(x)+ L (x-xk)I~(x)=H"(x,x)+ I. (x-xdl~(x)

k~L k~l k~l



GENERAL ORTHOGONAL POLYNOMIALS

and

n n

X2= L x~Adx)+2 L xk(x-xk)l~(x)
k ~ I k ~ 1

n

=Hn(x2,x)+2 I Xk(x-xk)l~(x).
k~l

From these identities it follows by (89) that

n

L (x-xk)21;(x)=x[x-Hn (x, x)] - Hx2-H,,(x2, x)]
k~l

331

(93)

which implies (90) by virtue of (37).

(b) We need a result proved by Grunwald in [7, formula (92),
p. 236], which states that if Hn is p-normal then for every € > 0

n

L l(x-xdl~(x)I=0(n-P+2r.).
k~l

Clearly, this remains true provided we replace the sign "0" by "0." Thus

n

I (x-xd21~(x)=0(n-I'+2r.).

k~L

Again using (37) we obtain (92). I

4.6. L 2 Version of the Principle of Contamination

Given p > 0, for L1 E.4I, define

{ }
l~

IIfll L~7(Ll):= t If(x)IP dtx(x) .

Recently, X. Li et at. in [8, Theorem 2.1] proved the following result,
which illustrates an L 2 version of the principle of contamination.

THEOREM F. Suppose that tx'(x»O, a.e. on [-I, I]. LetfEL~,[-1,1],
f not a polynomial, and <5 E (0, 2]. Then

i { Ilf- Sn(dtx,f) II L~7ra. h] }2 = CfJ

n ~ a IIf- Sn(dtx,f)11 L~7[ -I. I]

holds uniformly for [a, b] c [ -1, I] with h - a ~ <5.

640n}')·7
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We point out that the proof of this theorem uses only Tunin's Inequality
for :x'(x) > 0 a.e., given by A. Mate et al. [10]. Now using Tunin's
Inequality (45) for general measures one can extend Theorem F as follows.

THEOREM 16. Let:x E r. Let fE L3J - 1, 1J,f not a polynomial, and
b> 12(:x')1. Then

Y { 11/- Sll(d:x,flll" (1) }2
lI~O 11/- SlI(d:X,f)II,~,';h'l, I] =X;

holds unifrmnly for ,1 E.lt with 1,11 ~ b.

We leave the details of the proof to the reader.
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